Front-end Coding Standards[image: image1.jpg]EPRINTS

[image: image2.png]Epnmrs

Front-End Coding Standards
Version 1.1
Change History:
	Revision Date
	Last Revision By
	Reason for Change

	11/18/2006
	ncadsawan
	Initial draft. 0.1

	03/22/2007
	revans
	new, simplified version. 1.0

	01/03/2008
	revans
	updates for CSS Reset and IE7. 1.1

	02/06/2008
	Rob Riggs
	Added in information on reusing background images

Introduction

The purpose of this document is to layout the front-end coding standards according to which html and css should be produced for use in EZPrints' websites and web applications. At EZPrints, we strive to produce only semantic, valid XHTML 1.0 Strict markup, where all presentational elements are controlled by structured well-organized CSS. This document should help explain and guide developers in producing this kind of high quality, front-end code.
XHTML 1.0

The XHTML 1.0 specification:

http://www.w3.org/TR/2002/REC-xhtml1-20020801/
EZPrints uses the XHTML 1.0 Strict DTD:

http://www.w3.org/TR/2002/REC-xhtml1-20020801/DTD/xhtml1-strict.dtd
The use of XHTML 1.0 Strict DTD is meant to keep presentational markup out of the code base and to allow CSS to handle all presentational aspects. XHTML 1.0 Strict DTD usage will usually take the structure of:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>...</title>

...

</head>

<body>

...

</body>

</html>

Note that the XML declaration is NOT being used, as it causes rendering errors in Windows IE6 when present. The XML declaration is not required in the XHTML 1.0 Strict DTD, so will not impact validation. Note: XHTML 1.0 Strict DTD requires the encoding of the ampersand, "&" as "&" within attribute values.
On Validation

Validation of markup is a goal, not an end. If code doesn’t validate, there should be a specific reason for the infraction.

Semantic HTML

EZPrints tries to create semantic HTML to support accessibility, efficient tagging, and code readability. Just because a layout validates and doesn’t use tables, doesn’t mean it’s written semantically. For example, the following code snippet would validate, but isn’t semantic HTML:

...

<body>

<div class="heading">Take a look at my cool site!</div>

<div class="paragraph">This is so cool.</div>

<div class="paragraph">Here are some cool links.</div>

<div class="list">

My Myspace Site

My Buddy’s Site

Another Buddy’s Site

</div>

</body>

</html>

As can be seen, this is perfectly valid code, but the abuse of <div> tags and the use of classes to give the divs some semblance of meaning makes the code difficult to read and more verbose than necessary.

This code could be rewritten as:

...

<body>

<h1>Take a look at my cool site!</h1>

<p>This is so cool.</p>

<p>Here are some cool links.</p>

My Myspace Site

My Buddy’s Site

Another Buddy’s Site

</body>

</html>

This example shows how HTML elements are used to give meaning and structure to their content. The code is also lighter weight (uses fewer characters) and is easier to read. Any CSS written for this code will be cleaner as a result of using semantic HTML. Also, search engine spiders will rank the <h1> tag and ignore class="heading", as it has no inherent meaning.

IDs and Classes

When inserting an id or class into HTML, remember that an id is unique and can only be used once on a page. A class can be used on multiple elements. Also, an element may be given multiple classes, e.g. <p class="error popup">.

When naming an id or class, take care to use a name that is also semantic. Do not name a class or id after how it will be styled. Naming a class "blue" is a poor choice, because the design may change in the future to green and now the class="blue" actually shows a green element. Instead, use naming like class="error" or id="mainNavigation" as these names have meaning as to their purpose.

If the HTML is written semantically, the need of an id or class will be lessened and the code will remain leaner than non-semantically written code. When inserting an id or class into HTML, insert them from the highest level possible. From the example above:

...

My Myspace Site

My Buddy’s Site

Another Buddy’s Site

...

If we wanted to single out the anchor tags of this unordered list from those of another, we could add a class to each of the anchor tags:

...

My Myspace Site

My Buddy’s Site

Another Buddy’s Site

...

The corresponding CSS would be:

a.special {}

As can be seen, class="special" is unnecessarily repeated. If the list were longer, the page weight would grow even larger because of the repetition. A better method would be to target a higher level parent element, in this case: .

...

<ul class="special">

My Myspace Site

My Buddy’s Site

Another Buddy’s Site

...

The corresponding CSS would be:

ul.special a {}

or, more simply:

.special a {}

Although specificity is dealt with in CSS, the better the HTML is structured helps to better structure the CSS needed.
CSS

Linking Stylesheets

Stylesheets should be linked to an HTML file in an external document instead of being included as an internal stylesheet in the HTML document. This will keep the page weight down of the HTML document and keep a single repository of styles for easier maintenance. There are two ways to link to an external stylesheet:

<style type="text/css"
@import url(stylesheet.css);

</style>

or

<link rel="stylesheet" href="stylesheet.css" type="text/css" media="screen">

The only significant difference between the two methods is which browsers understand the syntax. The @import syntax isn’t understood by older browsers like Netscape 4, so it can be used a filter for that browser.

Print Stylesheets

A print stylesheet is used to offer a printer-friendly version of the content on a page. Print stylesheets should be linked as external files as well. The two ways to link to an external print stylesheet are:

<style type="text/css"
@media url(print.css) print;

</style>

or

<link rel="stylesheet" href="print.css" type="text/css" media="print">

Sections that aren’t necessary for printing, navigation sections, for instance, should be hidden using display: none;. Formatting should be addressed for legibility. Line-height, font-size, font-family are just some styles that might be considered for changing in a print stylesheet.

Units

Print stylesheets should use font units of "points", e.g. font-size: 10pt; as these are printing units as opposed to "em", which is a screen unit. For screen fonts, "em" should be used for font sizes. This is a relative sizing unit based on the font used. By using "em", a user of Internet Explorer in Windows is able to adjust the font size for legibility. If pixel units are used (px), these users are unable to adjust the font size. So, pixels units should almost always be avoided.
Formatting

While there is no absolute right or wrong way to format CSS, adhering to certain consistent formatting guidelines can make reading CSS much easier. CSS indenting is the preferred method for writing CSS. CSS indenting formats the CSS to reflect the HTML structure it styles. From the HTML example above, the corresponding CSS would be formatted thusly:

h1 {}

p {}

ul {}

ul li {}

ul li a {}

The indented CSS shows the inheritance of styles and reflects the structure of the corresponding HTML. It allows for easier reading and relating to the HTML it styles. Tabs are recommended, instead of multiple spaces, to keep from needlessly raising the character count and to enforce consistency.
Background Images
When creating background images for containers, buttons or other common page elements, extra care and attention should be taken to create these backgrounds as flexible, reusable components. For example, if the only difference between the background for a 300px wide by 300px high container, and a 600px wide by 400px high container are the dimensions, then the CSS should use the same image(s) to reflect both containers, rather than have fixed containers that do not stretch to meet the site’s content.
For more information on one way to achieve this, A List Apart has a “sliding doors” article on how to accomplish this:

http://www.alistapart.com/articles/slidingdoors/
Defaults Styles / CSS Reset
Browsers automatically add styles to certain elements by default, e.g. most browsers add margin to the body and list item elements. In order to have the most amount of control over the layout, often it is helpful to include at the beginning of one's stylesheet a set of styles to override these browser defaults. This is referred to as "css reset". Here is an example:

html, body, form {

margin: 0;

padding: 0;

font: normal 100%/120% Verdana, Arial, Helvetica, sans-serif;

}

h1, h2, h3, h4, h5, h6, p, pre, blockquote, ul, ol, dl, address {

margin: 0;

padding: 0;

}

li, dd, blockquote {

margin-left: 2em;

}

[Section Under Review – revans 1/18/2008]

There are several other css reset styles available that EZPrints may want to adopt. To wit, both Erik Meyer and Yahoo each have some recommended styles:
http://meyerweb.com/eric/thoughts/2007/05/01/reset-reloaded/
http://yui.yahooapis.com/2.4.1/build/reset/reset-min.css
Dealing with Internet Explorer

Because of the incomplete CSS implementation in IE6 and the widespread use of this browser, it is often necessary to employee certain "CSS hacks" to filter or apply certain IE-specific styles. There are many different IE CSS hacks available that have worked well in the past but with the release of IE7, many of these hacks will are no longer practical. Microsoft has offered a proprietary solution to deal with this very issue. Microsoft makes use of conditional comments to filter code specific to IE. Conditional comments can be used for both CSS and Javascript. Here’s the syntax:

<!--[if lt IE 7]>

<link rel="stylesheet" type="text/css" href="ie_hacks.css" />

<![endif]-->

All other browsers will ignore the conditional comment, interpreting it as a regular HTML comment, but IE will read this code and link to the specified stylesheet. Because only IE will read this stylesheet, all styles necessary for proper rendering in IE are in a single place and can be more easily managed.

The syntax of the first line of the conditional comment:

<!--[if lt IE 7]>

reads as "if less than IE 7". Other operators available for use are: "lte", "gt" and "gte" for "less than or equal to", "greater than" and "greater than or equal to" respectively. For better future compatibility, the above code is recommended.

It should be noted Microsoft also created the converse of these conditional comments:

<![if !IE]>

You are NOT using IE.

<![endif]>

meaning "if not IE". This method is not recommended, however, as IE6 should generally be treated as the aberration not the other way around.
revans
Page 4
2/7/2008

